Abstract

Metal matrix composites (MMCs) are new generation engineering materials that possess superior physical and mechanical properties compared to non-reinforced alloys. However, the presence of abrasive ceramic reinforcements in the ductile matrix causes severe tool wear and premature tool failure. Flank wear was found to be the dominant wear mode while the main wear mechanism was abrasion. Analysis of the cutting tools using scanning electron microscopy (SEM) has shown that both two-body and three-body abrasion are operational during machining of MMCs. In this paper, a methodology for predicting the tool flank wear progression during bar turning of MMCs is presented. In the proposed model, the wear volume due to two-body and three-body abrasion mechanisms was formulated. In addition, the flank wear rate was quantified by considering the tool geometry in three dimensional (3D) turning. The main objective of this paper is to investigate the contribution of two-body and three-body abrasion towards the tool wear volume during cutting MMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.