Abstract
In this work, we analyze the tunable multiple-filtering property at infrared frequency in a finite semiconductor-dielectric photonic crystal (SDPC), (AB) P A, where A is a strongly extrinsic semiconductor, n-type germanium (n-Ge). B is a dielectric material, and P is the number of periods. It is found that multiple filtering phenomenon can be obtained in the region where the permittivity of n-Ge is negative. The number of resonant peaks is found to be equal to P. With the permittivity of n-Ge being concentration-dependent, these resonant peaks can be shifted as a function of impurity concentration. The analysis indicates that such an SDPC can work as a tunable multichannel filter which is of technical use for the semiconductor applications in optical communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.