Abstract
In this paper, we propose a new model to characterize the behaviour of a flame driven by temperature and pressure variables. The model is formulated using a p-Laplacian operator, an advection term, and a nonlinear reaction (considering linear kinetics). First, the uniqueness and boundedness of the weak solutions are demonstrated. Subsequently, traveling wave solutions supported by the geometric perturbation theory are obtained. As a major outcome, minimum traveling wave speeds are shown to exist, for which the associated profiles of the solutions are purely monotonic with exponential behaviour. The assumptions considered in the analytical approach are further explored through a numerical assessment, and self-similar solutions are constructed to determine the evolution of the flame front in terms of the temperature and pressure variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.