Abstract

A time-domain surface integral equation approach based on the electric field formulation is utilized to calculate the transient scattering from both conducting and dielectric bodies consisting of arbitrarily shaped complex structures. The solution method is based on the method of moments (MoM) and involves the modeling of an arbitrarily shaped structure in conjunction with the triangular patch basis functions. An implicit method is described to solve the coupled integral equations derived utilizing the equivalence principle directly in the time domain. The usual late-time instabilities associated with the time-domain integral equations are avoided by using an implicit scheme. Detailed mathematical steps are included along with representative numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.