Abstract

The conventional harmonic balance principle is a convenient tool for finding periodic solutions in variable-structure systems, which may occur as chattering in sliding mode control or as a normal operating mode in relay systems, limit cycling tests aimed at controller tuning through variable-structure algorithms, etc. In the present book chapter, the conventional harmonic balance principle is extended to transient oscillatory processes in systems. This principle is termed the dynamic harmonic balance principle. It is formulated for the system having one single-valued oddsymmetric nonlinearity and linear plant without zeros in the transfer function. Based on the dynamic harmonic balance, the equations for the amplitude, frequency rate of change, and amplitude rate of change are derived. This principle is then illustrated by analysis of transient motions in a variable-structure system and the decaying motions of a rocking block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.