Abstract
PurposeThe purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of power lines in close proximity.Design/methodology/approachBased on finite difference‐time domain method, an improved method is proposed to calculate transient inductive interference in underground metallic pipelines due to a fault in nearby power lines. The frequency‐dependent problem in the analysis of transient interference is solved in phase domain. Compared with the traditional method, the disposal of phase‐modal transformation matrices’ frequency‐dependent characteristic is avoided and the calculation is simplified by using vector fitting approach and recursive algorithm greatly in the proposed method.FindingsA novel improved method is proposed to calculate transient induced voltage distribution along underground metallic pipelines due to a fault in nearby power lines. Results show that the peak value of transient induced voltage at the most critical point is about 1.15 times of the magnitude in the steady state without the fault removed and the analysis of transient inductive interference is necessary in the fault‐to‐ground case of power lines.Practical implicationsIn order to mitigate the interference from power lines to nearby pipelines, pipelines should be good grounded and positioned as far away from the power line as possible. In high soil resistivity areas, the common corridor should be avoided.Originality/valueThe paper presents a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of nearby power lines. The proposed method is general and can also be applied to other transient interference studies such as crosstalk problems of communication networks and interference between power lines and aboveground pipelines or communication cables. Effects of various parameters upon the inductive interference generated in underground pipelines due to a fault in nearby power lines are analyzed to be a guide for controlling the inductive interference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.