Abstract

Marek's disease virus (MDV) is an oncogenic herpesvirus that causes malignant lymphomas in chickens. Recent field isolates of MDV have tended to exhibit increasing virulence, and MDV strains are currently classified into four categories based on their relative virulence. Meq, a putative MDV oncoprotein, resembles the Jun/Fos family of basic leucine zipper (bZIP) transcription factors and can regulate the expression of viral and cellular genes as a homodimer or as a heterodimer with a variety of bZIP family proteins. MDV isolates display distinct diversity and point mutations in Meq, which may contribute to changes in the transcriptional activities of Meq and subsequently, to observed increases in MDV oncogenicity. In this study, we introduced mutations into the meq gene and used dual luciferase reporter assays to analyze the transcriptional activities of the resulting Meq proteins to determine whether distinct mutations in Meq could be responsible for differences in transcriptional activity among MDV strains. A proline-to-alanine substitution at position 217, the second position of one of the proline direct repeats in the transactivation domain, enhanced the transactivation activity of Meq. In addition, we found that two substitutions at positions 283 and 320 affected transactivation activity. These results suggest that the distinct diversity of and point mutations in the Meq proteins are responsible for differences in transactivation activity among MDV strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.