Abstract

Recently, many companies have introduced automated defect detection methods for defect-free PCB manufacturing. In particular, deep learning-based image understanding methods are very widely used. In this study, we present an analysis of training deep learning models to perform PCB defect detection stably. To this end, we first summarize the characteristics of industrial images, such as PCB images. Then, the factors that can cause changes (contamination and quality degradation) to the image data in the industrial field are analyzed. Subsequently, we organize defect detection methods that can be applied according to the situation and purpose of PCB defect detection. In addition, we review the characteristics of each method in detail. Our experimental results demonstrated the impact of various degradation factors, such as defect detection methods, data quality, and image contamination. Based on our overview of PCB defect detection and experiment results, we present knowledge and guidelines for correct PCB defect detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.