Abstract

This study establishes an analytical basis for the prediction of chatter stability in the turning process in the presence of wear flat on the tool flank. The components contributing to the forcing function in the machine vibration dynamics are analyzed in the context of cutting force, contact force and Coriolis force. In this way, the effects of the displaced workpiece volume at the wear flat as well as the workpiece rotation in conjunction with its radial compliance can be incorporated in describing the motion of the vibration system. Laplace domain analysis provides the analytical solution for the limits of stability in terms of the machine characteristics, structural stiffness, cutting stiffness, specific contact force, cutting conditions and cutter geometry. Stability plots are presented to relate stiffness ratio to cutting velocity in the determination of chatter stability. Machining experiments at various cutting conditions were conducted to identify the characteristic parameters involved in the vibration system and to verify the analytical stability limits. The extent of tool wear effect and Coriolis effect on the stability of machining is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call