Abstract

BackgroundPepper (Capsicum annuum L.) is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is the largest class of known disease resistance genes (R genes) effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs.ResultsA total of 78 R gene analogues (CaRGAs) were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL) along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR)-NBS-LRR (CaRGAs I to IV) and TIR-NBS-LRR (CaRGAs V to VII) subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain) is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in defence responses by activating signaling pathways.ConclusionThe identified CaRGAs are a valuable resource for discovering R genes and developing RGA molecular markers for genetic map construction. They will also be useful for improving disease resistance in pepper. The findings of this study provide a better understanding of the evolutionary mechanisms that drive the functional diversification of non-TIR- and TIR-NBS-LRR R genes in pepper.

Highlights

  • Pepper (Capsicum annuum L.) is one of the most important vegetable crops worldwide

  • Identification of non-the mammalian interleukin-1 receptor (TIR)- and TIR-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) CaRGAs in pepper Candidate non-TIR- and TIR-NBS-LRR CaRGAs were identified in pepper using two approaches, polymerase chain reaction (PCR) amplification with degenerate primers and database mining

  • The identified CaRGAs are a valuable resource for discovering resistance genes (R genes) and developing R gene analogues (RGAs) molecular markers that can be used for genetic mapping in pepper

Read more

Summary

Introduction

Pepper (Capsicum annuum L.) is one of the most important vegetable crops worldwide. its yield and fruit quality can be severely threatened by several pathogens. Sequence analyses revealed that these proteins share a high degree of homology and have a number of conserved motifs These include a nucleotide-binding site (NBS), a leucine-rich repeat (LRR) region, a motif homologous to the cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor (TIR), a coiled-coil (CC) or leucine zipper structure, a transmembrane domain (TM) and a protein kinase domain [6]. The NBS-LRR class of R genes can be divided into two subfamilies (TIR-NBS-LRR and non-TIR-NBS-LRR) based on the features of their N-terminal structure [2,8] These two subfamilies can be distinguished (95% accuracy) by the last residue, D (Aspartate) or W (Tryptophan), of the conserved kinase-2 motif within the NBS domain [9]. The highly conserved NBS domains can bind and hydrolyze ATP or GTP [10], whereas the LRR motif is typically involved in protein–protein interactions and is responsible for recognition specificity [2,11,12]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.