Abstract

Reliability is very important for the further development, commercialization and miniaturization of microelectromechanical systems (MEMS). In particular, concern arises about time-dependent degradation such as fatigue for MEMS with flexural elements because they are used in cyclic loading. This study investigated the time-dependent degradation of silicon micro-resonating structures. The test structure, designed and fabricated by micromachining, consisted of suspended beams, shuttle, combs and electrodes. It was operated at resonance mode by applying AC voltage with a function generator and the change of resonant frequency was detected. The failure of a notched beam was detected by the saturation of the decrease in resonant frequency. The test structure showed a decrease in resonant frequency with cycles that was attributed to stiffness degradation due to fatigue crack growth at the notch tip. By analyzing the test structure as a spring-mass system, the variation of stiffness of a notched beam with cycles was obtained from the resonant frequency. From this relation and the stiffness-crack relation, crack growth with cycles was calculated. Finally, the lifetime of the test structure was calculated and compared with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call