Abstract

A theoretical study of the time-of-flight (TOF) distributions under pulsed laser ablation has been performed. 2D simulations of pulsed evaporation of atoms into vacuum on the base of the direct simulation Monte Carlo (DSMC) method have been carried out. It is found that for large evaporating spots (when the spot radius exceeds the initial plume length by a factor of five) the TOF distributions practically do not change with the spot radius variation. Moreover, it is shown that such distributions can be obtained from 1D calculations. Thus, in the frames of 1D approach, the TOF distribution is a function only of the number of the evaporated monolayers, but not of the spot radius. The shape of the TOF distribution is shown to strongly depend on the amount of the evaporated matter. Based on the calculated TOF distributions, dependence of the particle kinetic energy on the number of the evaporated monolayers has been obtained. To verify the theoretical results, experimental data on laser ablation of niobium and mercury have been used, which confirm the obtained dependences. The obtained results allow estimating the irradiated surface temperature from the TOF distributions for monatomic neutral gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.