Abstract

Abstract A time–distance helioseismic technique, similar to the one used by Ilonidis et al., is applied to two independent numerical models of subsurface sound-speed perturbations to determine the spatial resolution and accuracy of phase travel time shift measurements. The technique is also used to examine pre-emergence signatures of several active regions observed by the Michelson Doppler Imager and the Helioseismic Magnetic Imager. In the context of similar measurements of quiet-Sun regions, three of the five studied active regions show strong phase travel time shifts several hours prior to emergence. These results form the basis of a discussion of noise in the derived phase travel time maps and possible criteria to distinguish between true and false-positive detection of emerging flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.