Abstract

We consider a time dependent Stokes problem that is motivated by two-phase incompressible flow problems with surface tension. The surface tension force results in a right-hand side functional in the momentum equation with poor regularity properties. As a strongly simplified model problem we treat a Stokes problem with a similar time dependent nonsmooth forcing term. We consider the implicit Euler and Crank-Nicolson methods for time discretization. The regularity properties of the data are such that for the Crank-Nicolson method one can not apply error analyses known in the literature. We present a convergence analysis leading to a second order error bound in a suitable negative norm that is weaker that the $$L^2$$ L 2 -norm. Results of numerical experiments are shown that confirm the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.