Abstract

Recent improvements in Fourier descriptor (FD) shape analysis enable rapid identification of three-dimensional objects using FD feature vectors derived from their boundaries. In three-dimensional shape analysis, it is essential to preserve all information to achieve good performance. In the real-time situation it is, of course, equally important to use a computationally efficient method. The method of three-dimensional shape analysis using normalized Fourier descriptors is information preserving, yet is as fast as previous suboptimum methods. In addition, the feature vector has a linear property, allowing to interpolate between library projections and effectively define a continuum of library projections rather than a finite set. This method is applied to the analysis of sequential data varying in resolution and orientation relative to the camera. Computational considerations are discussed, and it is seen that real-time implementation of the method is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.