Abstract

In this paper, an investigation is made of the three-dimensional flow and heat transfer of a nanofluid in the boundary-layer region over a flat sheet stretched continuously in two lateral directions. With the help of a series of similarity transformations, this problem is reduced to a set of three coupled differential equations. The homotopy analysis method (HAM) is then applied to derive the explicit solutions for both the velocity and the temperature distributions. A mathematical analysis shows that these solutions decay exponentially at far field. Besides, the influences of the nanoparticle volume fraction ϕ on the velocity and temperature profiles, as well as the reduced local skin friction coefficients and the reduced local Nusselt numbers are studied. It is found that the heat transfer conductivity of the nanofluid is superior to that of the pure fluids.

Highlights

  • Flow and heat transfer in the boundary-layer region near a stretching flat surface have been intensively investigated by many researchers during the past several decades owing to their wide applications in a number of industrial processes, for example, polymer extrusion, wire drawing, drawing of plastic films and artificial fibers, hot rolling, glassfiber, metal extrusion, metal spinning, and so on

  • It should be noted that Wang [ ] initiated the investigation of the three-dimensional boundary-layer flow caused by a stretching flat sheet in two lateral directions in an otherwise ambient fluid

  • 5 Conclusions In this paper, the three-dimensional nanofluid flow and heat transfer in the boundary-layer region over a flat sheet stretched continuously in two lateral directions has been examined in detail

Read more

Summary

Introduction

Flow and heat transfer in the boundary-layer region near a stretching flat surface have been intensively investigated by many researchers during the past several decades owing to their wide applications in a number of industrial processes, for example, polymer extrusion, wire drawing, drawing of plastic films and artificial fibers, hot rolling, glassfiber, metal extrusion, metal spinning, and so on. One blemish of this approach is that the physical parameters such as the coefficients of the Brownian diffusion and the thermophoresis are extremely hard to measure experimentally Another blemish is that, with this model, many well-constructed nonlinear problems in Newtonian fluids cannot be formulated for nanofluids even if the same initial and boundary conditions are given with the boundary-layer approximations and the similarity transformations. The present paper considers the steady laminar flow and heat transfer of a nanofluid in the boundary-layer region near a flat surface stretched continuously in two lateral directions. A homogeneous nanofluid model is employed here for simplification of the physical problem With this approach, a set of three coupled differential equations with their appropriate boundary conditions are obtained by means of some similarity transformations.

Results
Effects of the nanoparticle volume fraction φ on the flows
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.