Abstract

ABSTRACTThe optical properties of In0.53Ga0.47As/InP single quantum well (QW) (with an as-grown well width of 60Å structures) interdiffused with different cation and anion interdiffusion rates have been theoretically analyzed for applications in optoelectronics. The interdiffusion of TnGaAs/InP QW structures is complicated as interdifrusion can occur for either (i) only group-Ill (In,Ga), (ii) group-V (As,P), or (iii) both group-Ill and group-V sublattices. Depending on the resulting composition profiles, the shifts (blue or red) of the transition energies can be tuned to wavelengths between 1.3μm to 1.55μm for device applications. The results show that the control of the rates of cation and anion interdiffusion offers interesting possibilities for designing optoelectronic devices such as modulators and lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.