Abstract
In this paper, an advanced boundary element method (BEM) is developed for solving three-dimensional (3D) anisotropic heat conduction problems in thin-walled structures. The troublesome nearly singular integrals, which are crucial in the applications of the BEM to thin structures, are calculated efficiently by using a nonlinear coordinate transformation method. For the test problems studied, promising BEM results with only a small number of boundary elements have been obtained when the thickness of the structure is in the orders of micro-scales (10−6), which is sufficient for modeling most thin-walled structures as used in, for example, smart materials and thin layered coating systems. The advantages, disadvantages as well as potential applications of the proposed method, as compared with the finite element method (FEM), are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.