Abstract

Third order nonlinear effects and its enhancement in gold nanostructures has been numerically studied. Analysis method is based on computationally solving nonlinear Maxwell's equations, considering dispersion behavior of permittivity described by Drude model and third order nonlinear susceptibility. Simulation is done by method of nonlinear finite difference time domain method, in which nonlinear equations of electric field are solved by Newton-Raphshon method. As the main outcomes of third order nonlinear susceptibility, four wave mixing and third harmonic generation terms are produced around gold nanostructures. Results of analysis on different geometries and structures show that third order nonlinearity products are more enhanced in places where electric field enhancement is occurred due to surface plasmons. Results indicates that enhancement of nonlinearities is strongly occurred in structures whose interface is dielectric. According to analysis results, nonlinear effects are highly concentrated in the vicinity of nanostructures. Hence this approach can be used in applications where localized ultraviolet light is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call