Abstract

In this work, the compositions of Al-Ni-Fe alloys were determined based on thermodynamic parameters optimization. Decagonal quasicrystalline phase D-Al70.83Fe9.83Ni19.34 was identified in the alloy with the highest Gibbs free energy of solid solution formation, i.e., Al71Ni24Fe5. According to this, the configurational entropy and enthalpy of solid solution formation must reach equilibrium to form quasicrystals in Al-Ni-Fe alloys. Differential thermal analysis and X-ray diffraction were used to describe the crystallization mechanism as a function of Fe concentration. 57Fe Mössbauer spectroscopy was used to describe the Fe local environment in crystalline alloys and quasicrystals. Moreover, the influence of quasicrystalline phases on improving the corrosion resistance was investigated. Quasicrystalline Al71Ni24Fe5 alloy had a six-times lower corrosion rate than its crystalline counterparts. Although this alloy showed the best corrosion resistance, all high-pressure cast Al-Fe-Ni alloys displayed improved corrosion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.