Abstract

Effective numerical analysis is significant for the optimal design and reliability evaluation of MEMS, but the complexity of multi-physical field couplings and irreversible damage accumulation in long-term performance make the analysis difficult. In the present paper, the continuum damage mechanics method is used to develop a creep damage model and conduct long-term performance analysis for MEMS thermal actuators with coupled thermo-mechanical damage behavior. The developed damage model can make a connection between the material deterioration due to microstructure changes and the macroscopic responses (the change of thermo-mechanical performance or structure failure). The numerical simulations of coupled thermo-mechanical behavior in long-term performance are implemented using the finite element method, which is validated through comparison with previous literature. The numerical results demonstrate that the proposed damage model and numerical method can provide effective assessment in the long-term performance of MEMS thermal actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.