Abstract

Thermoelectric thin film/substrate structures have many practical applications such as in heat recovery systems. The general problem of thermally induced delamination between a thermoelectric thin film and a substrate is investigated. The temperature varies along the length direction but is constant along the thickness direction of the film. Analytical solutions of the temperature field in the film and the stress intensity factors (SIFs) at the delamination crack tips are obtained. The combined heat convection and heat radiation between the film surfaces and the surrounding medium (i.e., the air) are taken into account. Numerical results show that the SIFs sharply increase as the tips of the delamination crack approach the ends of the film. The combined heat convection and heat radiation can increase or decrease the SIFs. The mechanism for the delamination propagation in the thermoelectric film/substrate system is examined. The critical (permissible) temperature difference across the film governing the delamination propagation is identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.