Abstract

An approach based on the hypotheses of the classical beam theory for determining thermal stresses in unsymmetric cross-ply strips has been developed. The material behavior is considered linear elastic, and viscoelastic effects are not considered. By supposing linear strain distribution in the cross-sections, the position of the neutral axis, the radius of curvature and the distribution of thermal stresses have been determined. The analysis is valid in the case of large displacements, since the curvature is constant and the deformed shape is an arc of circumference. Five different lay-up configurations of strip geometry specimens have been used for experimental verification. Mid-point deflections have been measured and compared with theoretical values, applying both the proposed approach and the classical laminated plates theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.