Abstract

The hydration of polar and apolar groups can be explained quantitatively, via the random network model of water, in terms of differential distortions in first hydration shell water–water hydrogen bonding angle. This method of analyzing solute induced structural distortions of water is applied to study the ice-binding type III thermal hysteresis protein. The analysis reveals subtle but significant differences in solvent structuring of the ice-binding surface, compared to non-ice binding protein surface. The major differences in hydration in the ice-binding region are (i) polar groups have a very apolar-like hydration. (ii) there is more uniform hydration structure. Overall, this surface strongly enhances the tetrahedral, or ice-like, hydration within the primary hydration shell. It is concluded that these two specific features of the hydration structure are important for this surface to recognize, and preferentially interact with nascent ice crystals forming in liquid water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.