Abstract

The tensile behavior of an additively manufactured (AM) polymer matrix composite (PMC) is studied with in situ X-ray computed microtomography (CT) and digital volume correlation (DVC). In this experiment, the effects of recycled material content and print direction on the selective laser-sintered (SLS) material’s mechanical response are explored. The PMC samples are printed in a tensile specimen geometry with gage lengths parallel to all three orthogonal, primary sintering directions. In situ tensile-CT experiments are conducted at Argonne National Laboratory’s Advanced Photon Source 2-BM beamline. Analysis of the AM PMC’s tensile response, failure, and strain evolution is analyzed both from a conventional standpoint, using the load–displacement data recorded by the loading fixture, and from a microstructural standpoint by applying DVC analysis to the reconstructed volumes. Significant variations on both strength and ductility are observed from both vantages with respect to print direction and the recycled material content in the printed parts. It is found that the addition of recycled source material with a thermal history reduces the tensile strength of the SLS composite for all directions, but the effect is drastic on the strength in the layering direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.