Abstract
Thermal dilution experiments with Fiber-Optic Distributed Temperature Sensing (FO-DTS) were conducted at the In-situ Stimulation and Circulation (ISC) rock laboratory, at the Grimsel Test Site (GTS) in Switzerland. The experiment consists in replacing the total volume of a borehole with a warmer water and monitoring the rate of temperature increase and decrease during the heating and cooling periods, respectively. The changes in temperature monitored in depth and time under various hydraulic conditions and in different boreholes, are used to investigate the information provided by thermal dilution experiments in terms of groundwater flow and thermal properties in low-permeable fractured crystalline rock. The data analysis, and the use of analytical and numerical solutions for reproducing this data in the context of pure diffusion and advection–diffusion scenarios, lead to the following improvements and conclusions. (i) The formation thermal conductivity is estimated along the borehole by inverting the data collected under ambient conditions with a simple analytical solution. The estimated values are consistent with laboratory estimates. The method presents the advantage of requiring much shorter experiments than existing methods based on standard active-line-source (ALS) experiments, i.e., several hours versus the traditional 1–2 days. (ii) Hydraulically active fractures connecting boreholes are detected from experiments conducted under cross-borehole forced hydraulic conditions. (iii) The formation thermal conductivity and fracture flow velocity have a distinguished impact on the temperature anomalies for some ranges of these property values, implying that both properties can be estimated from well-parametrized experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Hydrology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.