Abstract

We developed a complex physical model for simulating laser amplifiers to numerically analyze birefringence effects. This model includes pump configuration, thermal lensing effects, birefringence, and beam propagation in the laser amplifier. Temperature, deformation, and stress inside the laser crystal were calculated using a three-dimensional finite element analysis (FEA). The pump configuration is simulated using a three-dimensional ray tracing or an approximation based on super-Gaussian functions. Our simulations show the depolarization of a linearly polarized electromagnetic wave in a cylindrical laser crystal. These simulations were performed using a three-dimensional full vectorial beam propagation method (VBPM). Stress induced birefringence can be compensated well for moderate pumping powers. High power amplification requires sensitive alignment. Our simulation technique calculates the influence of the photo-elastic effect inside the laser crystal accurately. Detailed knowledge about beam waist and depolarization is needed to develop compensation techniques for high power output beams with low depolarization losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call