Abstract

Rapid heat cycle molding (RHCM) is a molding process that the mold cavity is rapidly heated to a high temperature before plastic melt injection, and then cooled quickly once the cavity is completely filled. Heating/cooling efficiency and temperature uniformity of the RHCM system are two key technical parameters to ensure a high productivity and high-quality products. In this study, a numerical model to analyze the heat transfer in heating and cooling phases of RHCM was built. The effect of heating/cooling medium, layout and structure of the heating/cooling channels, mold structure, etc., on heating/cooling efficiency and temperature uniformity was studied and discussed by analyzing the thermal responses of the molding system in RHCM process. Based on the simulation results, the optimization design of the RHCM mold with hot-fluid heating was performed. Then, a new RHCM mold structure with a floating mold cavity was proposed to improve the heating/cooling efficiency and temperature uniformity. The effectiveness of this new mold structure was also verified by numerical experiments. At last, a RHCM production line with steam heating and water cooling was constructed for a thin-wall plastic part. In testing production, the molding systems can be heated and cooled rapidly with a molding cycle time of about 72 s. The production results show that the aesthetics of the molded parts was greatly enhanced and the weld mark on the plastic part’s surface was completely eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.