Abstract
Abstract Gear drives are widely used in mechanical driving devices, and the heating problem of gear has been paid much attention. The tooth surface temperature field of spur/helical gear is compared and thermal characteristic of spur/helical gear is studied in this paper. The calculation formula of frictional heat flux and convective heat transfer coefficient, which considers different surfaces of gear tooth, is derived. The frictional heat flux of the helical gear is different from that of the spur gear, and the calculation method is different. The finite element parametric model for thermal analysis is built and it realizes the automatic parametric modeling, loading, and generation of temperature field by ANSYS parametric design language (APDL) program. The influence of different parameters on gear temperature rise is analyzed and the distribution of the three-dimensional (3D) temperature field of spur/helical is obtained. The simulation analysis and experiment are compared to validate the accuracy of thermal analysis results. The research result reveals the distribution law of the 3D temperature field of spur/helical gear transmission at different working parameters. It provides theoretical guidance for gear antiscuffing capability and gear optimization design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.