Abstract
The oxidation of oils and biodiesels occurs due to several factors: the quantity of double bonds and the presence of allylic and bis-allylic hydrogens. Esters (biodiesel) that have large amounts of unsaturated fatty acids are more susceptible to oxidation than saturated. The aim of this work was to analyze the thermal and oxidative stability of ethyl biodiesel from Jatropha curcas L. and beef tallow by thermogravimetric, pressure differential scanning calorimetry, and PetroOxy methods. The samples of biodiesel from beef tallow present higher oxidation stability compared to biodiesel from J. curcas. In relation to calorimetric curves of biodiesel from J. curcas and beef tallow stored by 60 days without and with antioxidant, there was verified displacement of peak temperature of the transition to higher temperatures, respectively. Just a sample of biodiesel from beef tallow stored for 60 days with 3,000 ppm of antioxidant t-butyl-hydroxyquinone was within the standard established by Brazilian National Agency of Petroleum, Natural Gas, and Biofuels (ANP). The biodiesel from beef tallow was more stable in terms of thermal and oxidative stability than biodiesel from J. curcas. The thermal and oxidative stability of biodiesel depends on its chemical structure; this corroborates the fact that the oils with a predominance of saturated fatty acids are more stable than the unsaturated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.