Abstract

ABSTRACT This study investigated the variability in the worst-case scenario (WCS) and suggested a framework to improve the definition and guide further investigation. Optical tracking data from 26 male players across 38 matches were analysed to determine the WCS for total distance, high-speed running (>5.5 m.s−1) and sprinting (>7.0 m.s−1) using a 3-minute rolling window. Position, total output, previous epoch, match half, time of occurrence, classification of starter vs substitute, and minutes played were modelled as selected contextual factors hypothesized to have associations with the WCS. Linear mixed effects models were used to account for cross-sectional observations and repeated measures. Unexplained variance remained high (total distance R2 = 0.53, high-speed running R2 = 0.53 and sprinting R2 = 0.40). Intra-individual variability was also high (total distance CV = 4.6–8.2%; high-speed CV = 15.6–37.8% and Sprinting CV = 21.1–76.4%). The WCS defined as the maximal physical load in a given time-window, produces unstable metrics lacking context, with high variability. Furthermore, training drills targetting this metric concurrently across players may not have representative designs and may underprepare athletes for complete match demands and multifaceted WCS scenarios. Using WCS as benchmarks (reproducing similar physical activity for training purposes) is conceptually questionable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.