Abstract

Abstract Assessing polymer injectivity for EOR field applications is highly important and challenging. An excessive injectivity reduction during and after polymer injection may potentially affect the well integrity and recovery efficiency and consequently, injection strategy and the economics of the polymer projects. Moreover, well conditions such as skin, completion configuration, and injection water quality can significantly impact polymer injectivity. Additionally, the presence of fractures or micro-fractures may govern injection pressure. In contrast, historic field applications have shown that polymer injectivity is in general better than expected from simulations or laboratory data. In the laboratory experiments, the polymer injectivity has been evaluated by injection of significant amounts of pore volumes of polymer at relevant well-injection rates. In addition, several experiments were performed to measure the complex in-situ rheology expected to dominate the flow near the wellbore This paper presents the analysis of the the world's first polymer injectivity test (PIT) conducted in a high temperature and high salinity (HTHS) carbonate reservoir in Abu Dhabi as part of a comprehensive de-risking program for a new polymer-based EOR scheme proposed by ADNOC for these challenging carbonate reservoirs (see Masalmeh et. al., 2014). The de-risking program includes an extensive laboratory experimental program and field injectivity test to ensure that the identified polymer can be injected and propagated in the target formation before multi-well pilot and full-field implementation stages. Experimental laboratory data and the field injectivity test results are presented in earlier publications (Masalmeh et. al., 2019; Rachapudi et. al., 2020) and references therein. This PIT is the world's first polymer injectivity test in a carbonate reservoir under such harsh conditions of high salinity, high content of divalent ions and high temperature. In addition, the polymer used during the test has never been field-tested before. Therefore, the results of the PIT interpretation will help to de-risk the suitable polymer for the future inter-well pilot for the new proposed EOR Polymer-based scheme and it is a game-changer to unlock several opportunities for different Chemical EOR applications on full-field scale in other reservoirs with similar characteristics. A single well radial simulation model was built to integrate the surveillance data during PIT and the extensive laboratory experiments. Morever, multiple Pressure Fall Off Tests (PFOs) during the same periods were analyzed and intergaretd in the model.The study assessed the effect of polymer viscosity on mobility reduction, evaluated the polymer bank propagation, investigated the effect of the skin build-up, residual resistance factor (RRF) and shear effects on the well injectivity. Additionally, a comprehensive assisted history match method and robust simulation sensitivity analysis was implemented, thousands of sensitivity simulation runs were performed to capture several possible injection scenarios and validate laboratory parameters. The simulation study confirmed that the PIT could be interpreted using the laboratory-measured polymer parameters such as polymer bulk viscosity, in-situ rheology, RRF and adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call