Abstract

Two Malaysian hardwoods, acacia (Acacia mangium) and sesendok (Endospermum malaccense), that had been subjected to oleo-thermal modification were studied to determine their sorption isotherm behaviour using a dynamic vapour sorption apparatus. All the specimens were thermally modified using palm oil at three different temperatures (180, 200 and 220°C) and three different times (1, 2 and 3 h). The results showed that there was a reduction in equilibrium moisture content at each target relative humidity due to the heat treatment, but that the two wood species showed different behaviour in this respect. The adsorption isotherms were analysed using the Hailwood and Horrobin model, with excellent fits to the experimental data. The monolayer water and polylayer water were both reduced at a range of relative humidity values of the treated samples, although behaviour between the two wood species differed. Heat treatment resulted in an increase in hysteresis ratio, which was probably due to the increase in matrix stiffness of the cell walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call