Abstract
The steady-state viscous quantum hydrodynamic model in one space dimension is studied. The model consists of the continuity equations for the particle and current densities, coupled to the Poisson equation for the electrostatic potential. The equations are derived from a Wigner–Fokker–Planck model and they contain a third-order quantum correction term and second-order viscous terms. The existence of classical solutions is proved for “weakly supersonic” quantum flows. This means that a smallness condition on the particle velocity is still needed but the bound is allowed to be larger than for classical subsonic flows. Furthermore, the uniqueness of solutions and various asymptotic limits (semiclassical and inviscid limits) are investigated. The proofs are based on a reformulation of the problem as a fourth-order elliptic equation by using an exponential variable transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.