Abstract

Nanocomposites are a promising new class of structural materials for the aerospace structural components. This paper presents a detailed theoretical investigation of dynamic characteristics of cylinders made of carbon nanotube-reinforced composites. The cylinders are modeled as a cylindrical shell consisting of an isotropic matrix reinforced with transversely isotropic carbon nanotubes. Two different types of carbon nanotube reinforcements are considered: single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). The effects of carbon nanotube aspect ratio, dispersion, alignment and volume fraction on the elastic modulus are analyzed using the Eshelby–Mori–Tanaka theory. Mass and stiffness matrices are obtained via Ritz method and natural frequencies of the structure are derived through solving the eigenvalue problem. Finally, the effects of the CNT distribution on mode shapes and natural frequencies are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.