Abstract
In the present work, we adopt the scalar, pseudoscalar, vector, axialvector and tensor (anti)diquark operators as the elementary building blocks to construct vector and tensor local four-quark currents without introducing explicit P-waves, and explore the mass spectrum of the vector hidden-charm tetraquark states via the QCD sum rules comprehensively, and revisit the interpretations of the existing Y states in the scenario of vector tetraquark states. We resort to the energy scale formula to enhance the pole contributions and improve the convergent behaviors of the operator product expansion, and we should bear in mind that the predictions are rather sensitive to the particular energy scales which obey the uniform/same constraint. The predicted vector hidden-charm tetraquark states can be confronted to the experimental data in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.