Abstract
The vapor-liquid-solid (VLS) mechanism is most widely employed to grow nanowires (NWs). The mechanism uses foreign element catalytic agent (FECA) to mediate the growth. Because of this, it is believed to be very stable with the FECA-mediated droplets not consumed even when reaction conditions change. Recent experiments however differ, which suggest that even under cleanest growth conditions, VLS mechanism may not produce long, thin, uniform, single-crystal nanowires of high purity. The present investigation has addressed various issues involving fundamentals of VLS growth. While addressing these issues, it has taken into consideration the influence of the electrical, hydrodynamic, thermodynamic, and surface tension effects on NW growth. It has found that parameters such as mesoscopic effects on nanoparticle seeds, charge distribution in FECA-induced droplets, electronegativity of the droplet with respect to those of reactive nanowire vapor species, growth temperature, and chamber pressure play important role in the VLS growth. On the basis of an in-depth analysis of various issues, a simple, novel, malleable (SNM) model has been presented for the VLS mechanism. The model appears to explain the formation and observed characteristics of a wide variety of nanowires, including elemental and compound semiconductor nanowires. Also it provides an understanding of the influence of the dynamic behavior of the droplets on the NW growth. This study finds that increase in diameter with time of the droplet of tapered nanowires results primarily from gradual incorporation of oversupplied nanowire species into the FECA-mediated droplet, which is supported by experiments. It finds also that optimum compositions of the droplet constituents are crucial for VLS nanowire growth. An approximate model presented to exemplify the parametric dependency of VLS growth provides good description of NW growth rate as a function of temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.