Abstract

Calculations of the hydrodynamic pressure distribution in the slide bearing gap occur most often on the basis of ready-made computer programs based on CFD methods or one’s own calculation procedures based on various numerical methods. The use of one’s own calculation procedures and, for example, the finite difference method, allows one to include in the calculations of various additional non-classical effects on the lubricant (e.g., the influence of the magnetic field on ferrofluid, the influence of pressure or temperature on viscosity changes, non-Newtonian properties of lubricant or various non-classical models of dynamic viscosity changes). The aim of the authors’ research is to check how large the differences in results may be obtained using the two most frequently used methods of solving a Reynolds type equation. In this work, the authors use the small parameter method and the method of subsequent approximations to determine the distribution of hydrodynamic pressure. For numerical calculations, the finite difference method and our own calculation procedures and Mathcad 15 software were used. With both methods, identical conditions and parameters were assumed and the influence of pressure and temperature on viscosity change was taken into account. In the hydrodynamic pressure calculations, a laminar flow of the lubricating liquid and a non-isothermal lubrication model of the slide bearing were adopted. The classic Newtonian model was used as a constitutive equation. A cylindrical-type slide bearing of finite length with a smooth pan with a full wrap angle was accepted for consideration. In the thin layer of the oil film, the density and thermal conduction coefficient of the oil were assumed to remain unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.