Abstract

The safety and unintended effects of genetically modified (GM) crops have been the focus of public attention. Transcriptome analysis is a powerful tool to assess the potential impact of genetic modification on plant genomes. In this study, three transgenic (KMD, KF6, and TT51-1) and three non-transgenic (XS11, MH86, and MH63) rice varieties were assessed at the genomic and protein levels. The results of polymerase chain reaction (PCR) and Cry1Ab/1Ac speed test strips showed that the Bt gene was successfully expressed in transgenic rice. The results of RNA-seq analysis to analyze the unintended effects of transgenic Bt rice showed fewer differentially expressed genes (DEGs) between the transgenic and non-transgenic rice varieties than among the different varieties. Meanwhile, the results of principal component analysis and cluster analysis found no significant genetic variation between the transgenic and non-transgenic rice varieties, except for the presence of Bt in transgenic rice. There were only two co-upregulated DEGs and no co-downregulated DEGs among three comparison groups. Although there were various DEGs among the groups, the two co-upregulated DEGs were not related to any significantly enriched gene ontology (GO) term or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, indicating that the differences among the subgroups were more likely caused by complex environmental or genetic factors, rather than unintended effects due to Bt expression. This study provides useful information to further explore the unexpected effects and safety of GM rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call