Abstract
In this study, ultrasonic cavitation energy states were analyzed in a pilot-scale sonoreactor, using two- and three-dimensional mapping methods. The highest and most stable cavitation energy state, through the whole length, was obtained with an ultrasound application of 72 kHz. However, very poor energy distributions were obtained at ultrasound applications of 110 and 170 kHz. In the correlation between input acoustic power and average cavitation energy, proportional relationships were found in 35 and 72 kHz. It was anticipated that this method could be used for the optimization of large-scale sonoreactor designs. A three-dimensional cavitation energy analysis was also conducted in the application of 35 kHz and 160 W for the whole spots in the sonoreactor. The average energy in the pilot-sonoreactor was estimated to be 62.8 W, which accounts for approximately 40% energy conversion efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.