Abstract
The phenomenon of turbulence-radiation interaction (TRI) has been demonstrated experimentally, theoretically and numerically to be important in a great number of engineering applications. This paper presents a numerical study on the subject, focusing on a methane-air diffusion flame confined in a rectangular enclosure. An open source, Fortran-based code, Fire Dynamics Simulator, is used for the analysis. Large Eddy Simulation (LES) is adopted to model the turbulence, and to resolve the sub-grid scale terms the dynamic Smagorinsky model is employed. To solve the radiative heat transfer, the finite volume method is used alongside the Weighted-Sum-of-Gray-Gases model. The main objective of the present work is to assess the magnitude of TRI effects for the configuration proposed. For this purpose, the time-averaged wall heat fluxes and volumetric radiative heat source, calculated from the LES results, are compared with those same quantities obtained by independent simulations initialized using mean temperature and species concentration fields. TRI effects are found to be responsible for differences up to 30% between results considering and neglecting turbulent fluctuations. These differences are larger for the radiative heat source and for the radiative heat flux to the walls, smaller for the total heat flux, and almost negligible for the convective heat flux. The influence of the fuel stream Reynolds number on the TRI effects is also evaluated, and a slight decrease on the magnitude of TRI is observed with the increase of that parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.