Abstract

Using a megawatt wind turbine disc brake as a case study, this work analyzes the effects and action mechanism of dynamic wear on the braking interface of the braking pad on tribological behaviors as contact state, temperature field, and pressure distribution. The Archard wear model was incorporated into the solution of the tribological problem of the braking interface in ABAQUS using the arbitrary Lagrangian–Eulerian (ALE) technique through the UMESHMOTION subroutine. The wear interface meshes were changed without modifying other finite element analysis variables. Moreover, wear testing on the inertia braking tester validated the coupled heat-stress-wear model of the brake pad. The differences in the tribological behaviors of the braking interface with and without the dynamic wear of the braking pad were analyzed based on the simulation results of friction and wear in a braking cycle. The study revealed that the tribological behaviors of the braking interface were significantly affected by the dynamic wear of the braking pad. Specifically, the wear evolution changed the contact state, the area of stress concentration, and the temperature field distribution during the braking process. Hence, the wear properties of the brake pad were modified as a result of these tribological behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.