Abstract

Contemporarily, glass windows have a great impact on human beings’ daily life. It is crucial to design a glass with a reasonable thickness with a high transmission of visible light as well as a high reflection of near infrared light. In general, reflection from the glass surface and absorption of light waves by the glass material are important features for transmission. Therefore, for UV-visible near-infrared light waves, the greater the thickness of the glass, the greater the light absorption loss and the lower the transmission rate. However, it is believed that there are multiple reflections of light waves in flat glass and that the losses caused by reflections should also be related to the refractive index of the glass and the wavelength of the incident light. On this basis, this study has developed theoretical models of transmittance versus incident light wavelength and glass thickness, refractive index and absorption coefficient. According to the theoretical analysis, the thickness of the glass has a significant effect on the transmission spectrum of sunlight. To experimentally verify this theoretically predicted anomaly, this paper designed the experimental and measurement route and built the experimental test rig. A variety of glass samples in the thickness range of 1mm-10mm were designed and prepared for this project, and the UV-Vis-NIR transmission of the glass was scanned and measured, while the final measurement results observed anomalies in the variation of transmission with thickness. The experimental results, therefore, provide valid support for the theoretical model of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call