Abstract

An analysis of the tradeoffs between area and speed for a sequential implementation of a high-radix recurrence for logarithm computation is presented in this paper The high-radix algorithm is outlined and a sequential architecture is proposed, with the use of selection by rounding of the digits and redundant representation. Estimates of the execution time and total area are obtained for n = 16, 32 and 64 bits of precision and for radix values from r = 8 to r = 1024. An analysis of the tradeoffs between area and speed is presented, showing that the most efficient implementations are obtained for radices r = 256 for 16, 32 bit and r = 128 for 64 bit computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.