Abstract
Lake eutrophication leading to water pollution is a major global concern. In recent years, rapid economic growth and the increase in the intensity of resource exploitation in China have caused the influx of nitrogen and phosphorus into lakes. This in turn has led to more severe lake eutrophication, more frequent outbreaks of algal blooms, and the degradation of lake ecosystems. An effective plan balancing economic growth with the reduction of nitrogen and phosphorus emissions is greatly needed. The design and implementation of such a plan requires the collection and analysis of pertinent data. In this paper, we use the environmental computable general equilibrium (ECGE) model to identify the most effective way to balance economic growth with the reduction of nitrogen and phosphorus emissions. For the multiregional analysis, we use social accounting matrices (SAMs) and a provincial trade matrix based on the assumptions of the gravity model. We consider the Poyang Lake Watershed as a case study to illustrate the utility of the model. Based on present conditions in the Poyang Lake Watershed, restricting nitrogen and phosphorus emissions from sectors with the highest emissions is more effective for balancing economic growth and the reduction of nitrogen and phosphorus emissions than restricting nitrogen and phosphorus emissions from all sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.