Abstract

Topological motifs in pore architecture can profoundly influence the structural properties of that architecture, such as its mass, porosity, modulus, strength, and surface permeability. Taking the irregular cellular structure of the tri-spine horseshoe crab as a research model, we present a new approach to the quantitative description and analysis of structure-property-function relationships. We employ a robust skeletonization method to construct a curve-skeleton that relies on high-resolution 3D tomographic data. The topological motifs and mechanical properties of the long-range cellular structure were investigated using the Grasshopper plugin and uniaxial compression test to identify the variation gradient. Finite element analysis was conducted for the sub-volumes to obtain the variation in effective modulus along the three principal directions. The results show that the branch length and node distribution density varied from the tip to the base of the sharp corner. These node types formed a low-connectivity network, in which the node types 3-N and 4-N tended to follow the motifs of ideal planar triangle and tetrahedral configurations, respectively, with the highest proportion of inter-branch angles in the angle ranges of 115–120° and 105–110°. In addition, mapping the mechanical gradients to topological properties indicated that narrower profiles with a given branch length gradient, preferred branch orientation, and network connectedness degree are the main factors that affect the mechanical properties. These factors suggest significant potential for designing a controllable, irregularly cellular structure in terms of both morphology and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call