Abstract

Bovine lactoferrin (LF) is subjected to thermal processing during isolation for commercial use and while preparing milk products intended for infant nutrition. The present study is focused on the heat-induced structural changes of LF in buffer solution. Fluorescence spectroscopy, molecular modeling, and enzymatic hydrolysis studies were combined to extensively characterize LF thermal behavior. The temperature-induced changes induced on LF conformation were analyzed through intrinsic and ANS fluorescence parameters (intensity, maximum position, and parameter A value), the phase diagram method, and quenching experiments using acrylamide and iodide. A higher exposure of hydrophobic residues was highlighted through the molecular modeling approach, with a decrease in α-helix content from 23.5% to 21.2% when increasing the temperature from 25 °C to 80 °C. The experimental results demonstrate a more flexible conformation of the protein at higher temperature, thus facilitating the enzymatic hydrolysis by thermolysin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.