Abstract
Understanding the thermal aging kinetics of animal oils is of vital importance in the storage and applications of animal oils. In this work, we use four different techniques, including UV-Vis spectrometry, viscometry, impedance spectroscopy, and acid-base titration, to study the thermal aging kinetics of tallow, chicken oil, lard, and sheep oil in the temperature range from 120 °C to 180 °C. The evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration are discussed with the defect kinetics. The evolutions of the color centers, defects for dynamic viscosity, and electric dipoles follow second-order, first-order, and zero-order kinetics, respectively. The temperature dependence of rate constants for the evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration satisfies the Arrhenius equation with the same activation energy for individual animal oils. The activation energies are ~43.1, ~23.8, ~39.1, and ~37.5 kJ/mol for tallow, chicken oil, lard, and sheep oil, respectively. The thermal aging kinetics of the animal oils are attributed to the oxidation of triglycerides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.