Abstract

The LivDet-2020 competition focuses on Presentation Attacks Detection (PAD) algorithms, has still open problems, mainly unknown attack scenarios. It is crucial to enhance PAD methods. This can be achieved by augmenting the number of Presentation Attack Instruments (PAI) and Bona fide (genuine) images used to train such algorithms. Unfortunately, the capture and creation of PAI and even the capture of Bona fide images are sometimes complex to achieve. The generation of synthetic images with Generative Adversarial Networks (GAN) algorithms may help and has shown significant improvements in recent years. This paper presents a benchmark of GAN methods to achieve a novel synthetic PAI from a small set of periocular near-infrared images. The best PAI was obtained using StyleGAN2, and it was tested using the best PAD algorithm from the LivDet-2020. The synthetic PAI was able to fool such an algorithm. As a result, all images were classified as Bona fide. A MobileNetV2 was trained using the synthetic PAI as a new class to achieve a more robust PAD. The resulting PAD was able to classify 96.7% of synthetic images as attacks. BPCER10 was 0.24%. Such results demonstrated the need for PAD algorithms to be constantly updated and trained with synthetic images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.