Abstract
Finishing processes result in changes of near‐surface morphology, which strongly influences the fatigue behavior of components. Especially, roller bearings show a high dependency of the lifetime on surface roughness and the residual stress state in the subsurface volume. To analyze the influence of different finishing processes on the near‐surface morphology, including the residual stress state, roller bearing rings made of AISI 52100 are finished in this work using hard turning, rough grinding, and fine grinding. In addition, fatigue specimens made of AISI 52100 and finished by cryogenic hard turning are investigated. For each condition, the residual stresses are determined at different distances from the surface, showing pronounced compressive stresses for all conditions. While the ground roller bearing rings show highest compressive residual stresses at the surface, the hard turned bearing ring and the cryogenic hard turned fatigue specimens reveal maximum compressive stresses in the subsurface volume. Moreover, cyclic indentation tests (CITs) are conducted in the different subsurface volumes, showing a higher cyclic plasticity in relation to the respective initial state, which is assumed to be caused by finishing‐induced compressive residual stresses. Thus, the presented results indicate a high potential of CITs to efficiently characterize the residual stress state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.